通过从最佳运输理论的思想启发,我们呈现了信任评论家(TTC),一种新的生成型材算法。该算法消除了来自Wassersein GaN的可培训发电机;相反,它迭代地使用培训批评网络序列的梯度下降来修改源数据。这部分是由我们在评论者的梯度提供的最佳运输方向之间观察到的未对准,以及在由可训练发电机参数化的数据点实际移动的方向之间的最佳运输方向之间观察到的未对准。以前的工作已经从不同的观点到达类似的想法,但我们在最佳运输理论中的基础是激励自适应步长的选择,与恒定步长相比大大加速了会聚。使用此步骤规则,我们在具有密度的源分布的情况下证明了初始几何收敛速率。这些融合率仅停止仅在非可忽略的生成数据与真实数据中无法区分时申请。解决未对准问题提高了性能,我们在实验中表明,显示给出了定期的训练时期,TTC产生更高的质量图像,尽管在增加的内存要求上。此外,TTC提供了转化密度的迭代公式,传统的WGAN没有。最后,可以应用TTC将任何源分布映射到任何目标上;我们通过实验证明TTC可以在没有专用算法的图像生成,翻译和去噪中获得竞争性能。
translated by 谷歌翻译
Wasserstein Gans具有梯度惩罚(WGAN-GP)是一种非常流行的方法,用于培训生成模型以产生高质量的合成数据。虽然最初开发了WGAN-GP来计算生成数据和真实数据之间的Wasserstein 1距离,但最近的工作(例如[23])提供了经验证据,表明这没有发生,并认为WGAN-GP表现不佳,尽管没有很好地表现这个问题,但由于此问题。在本文中,我们首次表明WGAN-GP计算了最小的最佳运输问题的最小值,即所谓的拥挤运输[7]。拥挤的运输决定了在惩罚拥塞的运输模型下将一个分配转移到另一种分配的成本。对于WGAN-GP,我们发现拥塞的罚款具有由[12]中使用的采样策略所确定的空间变化的组件,其作用像是局部速度限制,使某些地区的拥塞成本比其他地区少。拥挤的运输问题的这一方面是新的,因为事实证明,拥塞的罚款是无限的,并且取决于要运输的分配,因此我们为这种情况提供了必要的数学证明。我们发现的一个方面是一个公式,将解决方案的梯度连接到WGAN-GP中的优化问题与最佳质量流量的平均动量。这与Wasserstein 1距离Kantorovich电位的梯度相反,Wasserstein 1距离仅是流动的归一化方向。基于此和其他考虑因素,我们推测我们的结果如何解释了观察到的WGAN-GP的性能。除了对gan的应用外,我们的定理还指出,使用神经网络技术大致解决大规模拥堵的运输问题的可能性。
translated by 谷歌翻译
We address the challenge of building domain-specific knowledge models for industrial use cases, where labelled data and taxonomic information is initially scarce. Our focus is on inductive link prediction models as a basis for practical tools that support knowledge engineers with exploring text collections and discovering and linking new (so-called open-world) entities to the knowledge graph. We argue that - though neural approaches to text mining have yielded impressive results in the past years - current benchmarks do not reflect the typical challenges encountered in the industrial wild properly. Therefore, our first contribution is an open benchmark coined IRT2 (inductive reasoning with text) that (1) covers knowledge graphs of varying sizes (including very small ones), (2) comes with incidental, low-quality text mentions, and (3) includes not only triple completion but also ranking, which is relevant for supporting experts with discovery tasks. We investigate two neural models for inductive link prediction, one based on end-to-end learning and one that learns from the knowledge graph and text data in separate steps. These models compete with a strong bag-of-words baseline. The results show a significant advance in performance for the neural approaches as soon as the available graph data decreases for linking. For ranking, the results are promising, and the neural approaches outperform the sparse retriever by a wide margin.
translated by 谷歌翻译
Artificial Intelligence (AI) and Machine Learning (ML) are weaving their way into the fabric of society, where they are playing a crucial role in numerous facets of our lives. As we witness the increased deployment of AI and ML in various types of devices, we benefit from their use into energy-efficient algorithms for low powered devices. In this paper, we investigate a scale and medium that is far smaller than conventional devices as we move towards molecular systems that can be utilized to perform machine learning functions, i.e., Molecular Machine Learning (MML). Fundamental to the operation of MML is the transport, processing, and interpretation of information propagated by molecules through chemical reactions. We begin by reviewing the current approaches that have been developed for MML, before we move towards potential new directions that rely on gene regulatory networks inside biological organisms as well as their population interactions to create neural networks. We then investigate mechanisms for training machine learning structures in biological cells based on calcium signaling and demonstrate their application to build an Analog to Digital Converter (ADC). Lastly, we look at potential future directions as well as challenges that this area could solve.
translated by 谷歌翻译
An important class of techniques for resonant anomaly detection in high energy physics builds models that can distinguish between reference and target datasets, where only the latter has appreciable signal. Such techniques, including Classification Without Labels (CWoLa) and Simulation Assisted Likelihood-free Anomaly Detection (SALAD) rely on a single reference dataset. They cannot take advantage of commonly-available multiple datasets and thus cannot fully exploit available information. In this work, we propose generalizations of CWoLa and SALAD for settings where multiple reference datasets are available, building on weak supervision techniques. We demonstrate improved performance in a number of settings with realistic and synthetic data. As an added benefit, our generalizations enable us to provide finite-sample guarantees, improving on existing asymptotic analyses.
translated by 谷歌翻译
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
Post-hoc explanation methods are used with the intent of providing insights about neural networks and are sometimes said to help engender trust in their outputs. However, popular explanations methods have been found to be fragile to minor perturbations of input features or model parameters. Relying on constraint relaxation techniques from non-convex optimization, we develop a method that upper-bounds the largest change an adversary can make to a gradient-based explanation via bounded manipulation of either the input features or model parameters. By propagating a compact input or parameter set as symbolic intervals through the forwards and backwards computations of the neural network we can formally certify the robustness of gradient-based explanations. Our bounds are differentiable, hence we can incorporate provable explanation robustness into neural network training. Empirically, our method surpasses the robustness provided by previous heuristic approaches. We find that our training method is the only method able to learn neural networks with certificates of explanation robustness across all six datasets tested.
translated by 谷歌翻译
Training a Neural Radiance Field (NeRF) without pre-computed camera poses is challenging. Recent advances in this direction demonstrate the possibility of jointly optimising a NeRF and camera poses in forward-facing scenes. However, these methods still face difficulties during dramatic camera movement. We tackle this challenging problem by incorporating undistorted monocular depth priors. These priors are generated by correcting scale and shift parameters during training, with which we are then able to constrain the relative poses between consecutive frames. This constraint is achieved using our proposed novel loss functions. Experiments on real-world indoor and outdoor scenes show that our method can handle challenging camera trajectories and outperforms existing methods in terms of novel view rendering quality and pose estimation accuracy.
translated by 谷歌翻译
Predicting the political polarity of news headlines is a challenging task that becomes even more challenging in a multilingual setting with low-resource languages. To deal with this, we propose to utilise the Inferential Commonsense Knowledge via a Translate-Retrieve-Translate strategy to introduce a learning framework. To begin with, we use the method of translation and retrieval to acquire the inferential knowledge in the target language. We then employ an attention mechanism to emphasise important inferences. We finally integrate the attended inferences into a multilingual pre-trained language model for the task of bias prediction. To evaluate the effectiveness of our framework, we present a dataset of over 62.6K multilingual news headlines in five European languages annotated with their respective political polarities. We evaluate several state-of-the-art multilingual pre-trained language models since their performance tends to vary across languages (low/high resource). Evaluation results demonstrate that our proposed framework is effective regardless of the models employed. Overall, the best performing model trained with only headlines show 0.90 accuracy and F1, and 0.83 jaccard score. With attended knowledge in our framework, the same model show an increase in 2.2% accuracy and F1, and 3.6% jaccard score. Extending our experiments to individual languages reveals that the models we analyze for Slovenian perform significantly worse than other languages in our dataset. To investigate this, we assess the effect of translation quality on prediction performance. It indicates that the disparity in performance is most likely due to poor translation quality. We release our dataset and scripts at: https://github.com/Swati17293/KG-Multi-Bias for future research. Our framework has the potential to benefit journalists, social scientists, news producers, and consumers.
translated by 谷歌翻译
Neural network interpretation methods, particularly feature attribution methods, are known to be fragile with respect to adversarial input perturbations. To address this, several methods for enhancing the local smoothness of the gradient while training have been proposed for attaining \textit{robust} feature attributions. However, the lack of considering the normalization of the attributions, which is essential in their visualizations, has been an obstacle to understanding and improving the robustness of feature attribution methods. In this paper, we provide new insights by taking such normalization into account. First, we show that for every non-negative homogeneous neural network, a naive $\ell_2$-robust criterion for gradients is \textit{not} normalization invariant, which means that two functions with the same normalized gradient can have different values. Second, we formulate a normalization invariant cosine distance-based criterion and derive its upper bound, which gives insight for why simply minimizing the Hessian norm at the input, as has been done in previous work, is not sufficient for attaining robust feature attribution. Finally, we propose to combine both $\ell_2$ and cosine distance-based criteria as regularization terms to leverage the advantages of both in aligning the local gradient. As a result, we experimentally show that models trained with our method produce much more robust interpretations on CIFAR-10 and ImageNet-100 without significantly hurting the accuracy, compared to the recent baselines. To the best of our knowledge, this is the first work to verify the robustness of interpretation on a larger-scale dataset beyond CIFAR-10, thanks to the computational efficiency of our method.
translated by 谷歌翻译